
CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

An Overview of Components for
Scientific Computing

and
Introduction to the Common

Component Architecture

CCA OverviewCCA
Common Component Architecture

2

Goals of This Module

• Introduce basic concepts and vocabulary of
component-based software engineering

• Highlight the special demands of high-performance
scientific computing on component environments

• Introduce some terminology and concepts from the
Common Component Architecture

• Provide a unifying context for the remaining talks
– For those attending the extended CCA tutorial

CCA OverviewCCA
Common Component Architecture

3

Motivation: Modern Scientific Software
Engineering Challenges

• Productivity
– Time to first solution (prototyping)
– Time to solution (“production”)
– Software infrastructure requirements (“other stuff needed”)

• Complexity
– Increasingly sophisticated models
– Model coupling – multi-scale, multi-physics, etc.
– “Interdisciplinarity”

• Performance
– Increasingly complex algorithms
– Increasingly complex computers
– Increasingly demanding applications

CCA OverviewCCA
Common Component Architecture

4

Motivation: For Library Developers

• People want to use your software, but need wrappers
in languages you don’t support
– Many component models provide language interoperability

• Discussions about standardizing interfaces are often
sidetracked into implementation issues
– Components separate interfaces from implementation

• You want users to stick to your published interface
and prevent them from stumbling (prying) into the
implementation details
– Most component models actively enforce the separation

CCA OverviewCCA
Common Component Architecture

5

Motivation: For Application Developers
and Users

• You have difficulty managing multiple third-party
libraries in your code

• You (want to) use more than two languages in your
application

• Your code is long-lived and different pieces evolve at
different rates

• You want to be able to swap competing
implementations of the same idea and test without
modifying any of your code

• You want to compose your application with some
other(s) that weren’t originally designed to be
combined

CCA OverviewCCA
Common Component Architecture

6

Some Observations About Software…

• “The complexity of software is an essential
property, not an accidental one.” [Brooks]
– We can’t get rid of complexity

• “Our failure to master the complexity of
software results in projects that are late, over
budget, and deficient in their stated
requirements.” [Booch]
– We must find ways to manage it

CCA OverviewCCA
Common Component Architecture

7

More Observations…

• “A complex system that works is invariably
found to have evolved from a simple system
that worked… A complex system designed
from scratch never works and cannot be
patched up to make it work.” [Gall]
– Build up from simpler pieces

• “The best software is code you don’t have to
write” [Jobs]
– Reuse code wherever possible

CCA OverviewCCA
Common Component Architecture

8

Component-Based Software
Engineering

• CBSE methodology is emerging, especially from business
and internet areas

• Software productivity
– Provides a “plug and play” application development environment
– Many components available “off the shelf”
– Abstract interfaces facilitate reuse and interoperability of software

• Software complexity
– Components encapsulate much complexity into “black boxes”
– Plug and play approach simplifies applications
– Model coupling is natural in component-based approach

• Software performance (indirect)
– Plug and play approach and rich “off the shelf” component library

simplify changes to accommodate different platforms

CCA OverviewCCA
Common Component Architecture

9

A Simple Example:
Numerical Integration Components

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Interoperable components
(provide same interfaces)

CCA OverviewCCA
Common Component Architecture

10

Many Applications are Possible…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA OverviewCCA
Common Component Architecture

11

The “Sociology” of Components

• Components need to be shared to be truly useful
– Sharing can be at several levels

• Source, binaries, remote service
– Various models possible for intellectual property/licensing

• Components with different IP constraints can be mixed in a
single application

• Peer component models facilitate collaboration of
groups on software development
– Group decides overall architecture and interfaces
– Individuals/sub-groups create individual components

CCA OverviewCCA
Common Component Architecture

12

Who Writes Components?

• “Everyone” involved in creating an application
can/should create components
– Domain scientists as well as computer scientists and applied

mathematicians
– Most will also use components written by other groups

• Allows developers to focus on their interest/specialty
– Get other capabilities via reuse of other’s components

• Sharing components within scientific domain allows
everyone to be more productive
– Reuse instead of reinvention

• As a unit of publication, a well-written and –tested
component is like a high-quality library
– Should receive same degree of recognition
– Often a more appropriate unit of publication/recognition than

an entire application code

CCA OverviewCCA
Common Component Architecture

13

CCA Concepts: Components

• Components are a unit of software composition
– Composition is based on interfaces (ports)

• Components provide/use one or more ports
– A component with no ports isn’t very interesting
– Components interact via ports; implementation is opaque to

the outside world

• Components include some code which interacts with
the CCA framework

• The granularity of components is dictated by the
application architecture and by performance
considerations

• Components are peers
– Application architecture determines relationships

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA OverviewCCA
Common Component Architecture

14

What is a Component Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…
– And have confidence that their components will work with

other components written in the same architecture

• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which are composed to form an

application and executed (framework)
– The rights and responsibilities of the framework

CCA OverviewCCA
Common Component Architecture

15

CCA Concepts: Frameworks
• The framework provides the means to “hold”

components and compose them into applications
– The framework is often application’s “main” or “program”

• Frameworks allow exchange of ports among
components without exposing implementation details

• Frameworks provide a small set of standard services
to components
– BuilderService allow programs to compose CCA apps

• Frameworks may make themselves appear as
components in order to connect to components in
other frameworks

• Currently: specific frameworks support specific
computing models (parallel, distributed, etc.).
Future: full flexibility through integration or
interoperation

CCA OverviewCCA
Common Component Architecture

16

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports
– In OO languages, a port is a class or interface
– In Fortran, a port is a bunch of subroutines or a module

• Components may provide ports – implement the
class or subroutines of the port ()

• Components may use ports – call methods or
subroutines in the port ()

• Links denote a procedural (caller/callee) relationship,
not dataflow!
– e.g., FunctionPort could contain: evaluate(in Arg, out Result)

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

“Provides” Port

“Uses” Port

CCA OverviewCCA
Common Component Architecture

17

Interfaces, Interoperability, and Reuse

• Interfaces define how components interact…
• Therefore interfaces are key to interoperability and

reuse of components

• In many cases, “any old interface” will do, but…
• General plug and play interoperability requires

multiple implementations providing the same
interface

• Reuse of components occurs when they provide
interfaces (functionality) needed in multiple
applications

CCA OverviewCCA
Common Component Architecture

18

Designing for Reuse, Implications

• Designing for interoperability and reuse requires
“standard” interfaces
– Typically domain-specific
– “Standard” need not imply a formal process, may mean

“widely used”

• Generally means collaborating with others

• Higher initial development cost (amortized over
multiple uses)

• Reuse implies longer-lived code
– thoroughly tested
– highly optimized
– improved support for multiple platforms

CCA OverviewCCA
Common Component Architecture

19

Relationships:
Components, Objects, and Libraries

• Components are typically discussed as objects or
collections of objects
– Interfaces generally designed in OO terms, but…
– Component internals need not be OO
– OO languages are not required

• Component environments can enforce the use of
published interfaces (prevent access to internals)
– Libraries can not

• It is possible to load several instances (versions) of a
component in a single application
– Impossible with libraries

• Components must include some code to interface
with the framework/component environment
– Libraries and objects do not

CCA OverviewCCA
Common Component Architecture

20

Domain-Specific Frameworks vs
Generic Component Architectures

Domain-Specific
• Often known as

“frameworks”
• Provide a significant

software infrastructure to
support applications in a
given domain
– Often attempts to generalize

an existing large application
• Often hard to adapt to use

outside the original domain
– Tend to assume a particular

structure/workflow for
application

• Relatively common

Generic
• Provide the infrastructure to

hook components together
– Domain-specific

infrastructure can be built as
components

• Usable in many domains
– Few assumptions about

application
– More opportunities for reuse

• Better supports model
coupling across traditional
domain boundaries

• Relatively rare at present
– Commodity component

models often not so useful
in HPC scientific context

CCA OverviewCCA
Common Component Architecture

21

Special Needs of Scientific HPC

• Support for legacy software
– How much change required for component environment?

• Performance is important
– What overheads are imposed by the component

environment?
• Both parallel and distributed computing are important

– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers? Arrays? (as first-class objects)
– Is it available on my parallel computer?

CCA OverviewCCA
Common Component Architecture

22

Commodity Component Models

• CORBA, COM, Enterprise JavaBeans
– Arise from business/internet software world

• Componentization requirements can be high
• Can impose significant performance overheads
• No recognition of tightly-coupled parallelism
• May be platform specific
• May have language constraints
• May not support common scientific data types

CCA OverviewCCA
Common Component Architecture

23

What is the CCA? (User View)

• A component model specifically designed for
high-performance scientific computing

• Supports both parallel and distributed
applications

• Designed to be implementable without
sacrificing performance

• Minimalist approach makes it easier to
componentize existing software

CCA OverviewCCA
Common Component Architecture

24

What is the CCA? (2)

• Components are peers

• Not just a dataflow model

• A tool to enhance the productivity of scientific
programmers
– Make the hard things easier, make some

intractable things tractable
– Support & promote reuse & interoperability
– Not a magic bullet

CCA OverviewCCA
Common Component Architecture

25

Importance of
Provides/Uses Pattern

for Ports
• Fences between components

– Components must declare both
what they provide and what
they use

– Components cannot interact
until ports are connected

– No mechanism to call anything
not part of a port

• Ports preserve high
performance direct connection
semantics…

• …While also allowing distributed
computing

Component 1 Component 2
Provides/Uses

Port

Direct Connection

Component 1

Component 2
Uses
Port

Provides
Port

Network
Connection

CCA OverviewCCA
Common Component Architecture

26

CCA Concepts: “Direct Connection”
Maintains Local Performance

• Calls between components equivalent to a C++
virtual function call: lookup function location, invoke it
– Cost equivalent of ~2.8 F77 or C function calls
– ~48 ns vs 17 ns on 500 MHz Pentium III Linux box

• Language interoperability can impose additional
overheads
– Some arguments require conversion
– Costs vary, but small for typical scientific computing needs

• Calls within components have no CCA-imposed
overhead

• Implications
– Be aware of costs
– Design so inter-component calls do enough work that

overhead is negligible

CCA OverviewCCA
Common Component Architecture

27

CCA Concepts: Framework Stays “Out
of the Way” of Component Parallelism

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

MCMD/MPMD also supported

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Each process loaded with the
same set of components wired
the same way

Other component models
ignore parallelism entirely

CCA OverviewCCA
Common Component Architecture

28

Scalability of Scientific Data Components
in CFRFS Combustion Applications

• Investigators: S. Lefantzi, J. Ray,
and H. Najm (SNL)

• Uses GrACEComponent,
CvodesComponent, etc.

• Shock-hydro code with no
refinement

• 200 x 200 & 350 x 350 meshes
• Cplant cluster

– 400 MHz EV5 Alphas
– 1 Gb/s Myrinet

• Negligible component overhead
• Worst perf : 73% scaling efficiency

for 200x200 mesh on 48 procs

Reference: S. Lefantzi, J. Ray, and H. Najm, Using the Common Component Architecture to Design High Performance
Scientific Simulation Codes, Proc of Int. Parallel and Distributed Processing Symposium, Nice, France, 2003, accepted.

CCA OverviewCCA
Common Component Architecture

29

CCA Concepts:
MxN Parallel Data Redistribution

• Share Data Among Coupled Parallel Models
– Disparate Parallel Topologies (M processes vs. N)
– e.g. Ocean & Atmosphere, Solver & Optimizer…
– e.g. Visualization (Mx1, increasingly, MxN)

Research area -- tools under development

CCA OverviewCCA
Common Component Architecture

30

CCA Concepts:
Language Interoperability

• Existing language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a unified
approach in which all
languages are
considered peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java
Babel tutorial
coming up!

Few other component models support all languages
and data types important for scientific computing

CCA OverviewCCA
Common Component Architecture

31

What the CCA isn’t…
• CCA doesn’t specify who owns “main”

– CCA components are peers
– Up to application to define component relationships

• “Driver component” is a common design pattern

• CCA doesn’t specify a parallel programming
environment
– Choose your favorite
– Mix multiple tools in a single application

• CCA doesn’t specify I/O
– But it gives you the infrastructure to create I/O components
– Use of stdio may be problematic in mixed language env.

• CCA doesn’t specify interfaces
– But it gives you the infrastructure to define and enforce them
– CCA Forum supports & promotes “standard” interface efforts

• CCA doesn’t require (but does support) separation of
algorithms/physics from data

CCA OverviewCCA
Common Component Architecture

32

What the CCA is…

• CCA is a specification for a component environment
–Fundamentally, a design pattern
–Multiple “reference” implementations exist
–Being used by applications

• CCA increases productivity
–Supports and promotes software interopability and reuse
–Provides “plug-and-play” paradigm for scientific software

• CCA offers the flexibility to architect your application as
you think best

–Doesn’t dictate component relationships, programming models, etc.
–Minimal performance overhead
–Minimal cost for incorporation of existing software

• CCA provides an environment in which domain-specific
application frameworks can be built

–While retaining opportunities for software reuse at multiple levels

CCA OverviewCCA
Common Component Architecture

33

Review of CCA Terms & Concepts
• Ports

– Interfaces between components
– Uses/provides model

• Framework
– Allows assembly of components into applications

• Direct Connection
– Maintain performance of local inter-component calls

• Parallelism
– Framework stays out of the way of parallel components

• MxN Parallel Data Redistribution
– Model coupling, visualization, etc.

• Language Interoperability
– Babel, Scientific Interface Definition Language (SIDL)

CCA OverviewCCA
Common Component Architecture

34

Summary

• Components are a software engineering tool to help
address software productivity and complexity

• Important concepts: components, interfaces,
frameworks, composability, reuse

• Scientific component environments come in “domain
specific” and “generic” flavors

• Scientific HPC imposes special demands on
component environments
– Which commodity tools may have trouble with

• The Common Component Architecture is specially
designed for the needs of HPC

